
Chief's AutoCalc IDE

 Chief's AutoCalc IDE
 © 1994, 1995, Dr Abimbola A. Olowofoyeku

The Autocalc Integrated Development Environment ("the IDE") is the Chief's Installer Pro
"wizard" for creating and managing installation projects. The IDE adopts a project-based
approach, the aim of which is to simplify and automate the process of generating INF
files and installation disks for your programs. It also provides a facility for compiling
Chief's Installer Pro INF and BATCH files into a binary format (to stop those
prying eyes); and also a facility for converting Visual BASIC Setup Wizard project
files (.VBZ files) into Chief's Installer Pro projects.
Provided that some very simple rules are followed, the IDE is easy to operate, and will
take the tedium out of the development process. This IDE is entirely optional, and users
can build their installation projects manually - through the use of a text editor. The IDE is
just provided as a productivity tool for those who care to use it.
The IDE is invoked by running AUTOCALC.EXE. This program requires the presence of
AUTODLL.EXE in the current directory, or in a directory in the "PATH". When
AUTOCALC.EXE is executed, the user is presented with a number of menu items, which
are discussed below.
Chief Pro Project Manager
Compile files
Calculate Space Requirements
Convert VB Setup file

Chief Pro Project Manager
The Chief's Installer Pro Project Manager ("PM") is the place where all the installation
project development takes place. The PM is centered around a main dialog box which
contains most of the activities that can be performed on projects. It is based heavily
on DRAG and DROP from the File Manager. When you drag files from the file
manager and drop onto the PM dialog, the files are processed and split up into
component records. You can then browse the records, amend, delete, save, etc., and
add new records by dragging new files from the file manager.
Before you can do anything in the PM, you have to open an existing project or create
a new one. Project files have the extension .CPJ. These files are comma delimited
data files (ASCII format), so they can be manipulated by most database programs.
Each project file also has a header file (.HDR) in which certain details about the
project are kept. This header file is also in ASCII format and so can freely be examined
and edited.
You need to treat Chief's Installer Pro projects as you would treat any database. When
you open a project, you need to close it before opening another one, or creating a new
one, etc. Changes made to any record on-screen are not kept until and unless you first
update that record (either by clicking on the "Update" button, or my clicking on
"Next" or "Previous", if the "Auto Update" check box is checked).
The PM dialog contains many buttons, edit fields, and check boxes, the functions of
which are detailed below.
Add
Delete
Update
Sort
Previous
Next
Auto Update
New
Open
Close
Save to file
File Manager
File Name
Target Directory
User Option #
Disk #
Icon Title
Group file
User Options
Make INF file
Build the Install Disks
Log the Build History
Compress the Files

Add
This adds a record to the project. It is largely redundant and not very useful, because
you are not expected to add records manually, but rather to DRAG and DROP files
from the file manager.

Delete
This deletes the currently displayed record from the project, and empties it's contents
both on screen and in memory. The project file itself is not changed until you save the
changes. Note that deleting a record when the Auto Update box is checked will lead
to an error message when you click on NEXT or PREVIOUS. So, if you will be deleting
records, you have to first uncheck the Auto Update check box.

Update
When you amend a record on screen, the change is not carried out unless you click
on this button (note that deletions are carried out immediately), and if you click on
NEXT or PREVIOUS without having updated the amendments, they amendments will
be lost and you will have to make them again. If you are about to make many
amendments, make sure that the Auto Update box is checked. This will save you
losing any changes you make. The Auto Update box is checked by default every time
the Project Manager is started.

Sort
This sorts the project records in memory. There are many ways of sorting and you will
be presented with a dialog box which allows you to specify the preferred one. The
sorted project is not written to the project file until you click on Save File.

Previous
Move to the previous record. If the Auto Update box is checked, then any changes to
the current record will be updated in memory - and if any of the necessary edit fields
is blank, you will get an error message.

Next
Move to the next record. If the Auto Update box is checked, then any changes to the
current record will be updated in memory - and if any of the necessary edit fields is
blank, you will get an error message.

Auto Update
Changes made to records on screen are not committed to memory unless the Update
button is clicked manually. If you move to the next or previous record without
updating, such changes are lost. This check box allows updates to be made
automatically every time you click on NEXT or PREVIOUS. It is checked by default
every time the Project Manager is started.

New
This allows you to create a new project. A dialog box will be presented which allows
you to supply some details for the new project. You first specify the project's working
directory, then the name for the project (note that this should just be a name -
maximum 8 characters, without any extension). A project file (.CPJ) and a header file
(.HDR) will be created for the project. You should also specify the name of the project's
Template INF file. This is the file that will be created when the Make INF file button
is clicked.
When you clock OK, the details provided in the dialog will be written to the project
header (.HDR) file, and a blank project (.CPF) file will be created. Both of these files
are ASCII files which you can edit with a text editor.
After the "New Project" dialog is closed, you are returned to the Project Manager.
There will be no records in the project, and you then need to open the file manager,
and drag and drop your project's files from the file manager to the Project Manager
dialog. As you do this, the file details are broken up as required, and the project's
records increase. You can then manipulate the project, by editing, saving, adding new
records (by drag and drop from file manager), etc.
Please note that files should only be added to the project by drag and drop
from the file manager. Trying to add files manually by typing in the edit boxes is
prone to error and is NOT supported at all.

Open
Open an existing project file. You will be presented with a list of Chief's Installer Pro
project (.CPJ) files to select from. You need to close any open project before you can
open a new one.

Close
Close an open project. If changes have been made, you will be prompted to save the
changes.

Save to file
Any changes made to a project (either new, or old) will not be saved to the disk until
you click on this button. It is a good idea to do this fairly regularly, in case something
goes wrong.

File Manager
The Project Manager is designed to be operated in conjunction with the Windows file
manager. Files should be added to a project ONLY by dragging from the file manager
(or any    other shell that allows drag and drop) and dropping onto the Project Manager
dialog. Clicking on this button tries to load the file manager (WINFILE.EXE).

File Name
When a file is dropped onto the Project Manager dialog, the full path name of the file
is placed in the edit box titled File Name.

Target Directory
When a file is dropped onto the Project Manager dialog, the proposed target directory
of the file is placed in the edit box titled Target Directory.    Most times, this will be a
Chief's Installer Pro reserved word (e.g., files dragged from the Windows directory
will be marked as going to $WINDIR, and files dragged from the project's working
directory will be marked as going to $DEST, etc).

User Option #
When a file is dropped onto the Project Manager dialog, it is deemed that the file will
be considered mandatory, so the it's User Option field is set to zero ("0"). If you want
the file to fall under any of your user options, you need to change this field to the
number of the relevant user option (and then make sure that the change is updated,
either by clicking the Update button, or by making sure that the Auto Update box is
checked).

Disk #
When a file is dropped onto the Project Manager dialog, it is deemed that the file will
be on disk #1 of the installation set, and the Disk # field is set accordingly. If this is
not the case, you need to change this field to reflect the relevant disk number, and
then update.

Icon Title
When a file is dropped onto the Project Manager dialog, it is deemed that no icon will
be created for the file, so this field is empty. If you want an icon to be created for the
file, then you need to put the title of the icon in this field, and then update.

Group file
By default, all files are marked as going to the group file pointed to by the $GROUP
reserved word. If this is not the case, then you need to change this field to reflect the
name of the group that you want the file's icon to go into, and then update.

User Options
Clicking on this button presents you with a dialog box containing the default titles for
the project's user options (maximum, 10). You can then change the title of any or all
of the user options.

Make INF file
This is the main goal of every project - to be able to automatically generate a
template INF file for you. The things which are tedious to do are done for you in the
template INF file (the project's name, with the extension .INF, or the file pointed to by
the $INF-FILE entry in the project's .HDR file).
Clicking on this button generates the template INF file for the currently open project.
This process might take a while, depending on the number of files in the project.
When the template has been created, you are then expected to edit it for things like
banner names, and other optional reserved words.

See also;
Build the Install Disks
Log the Build History
Compress the Files

Build the Install Disks
Checking this box will cause the Project Manager to try to build you installation disk
set after creating the template INF file. You need to have your blanks disks ready if
you are going to copy to floppy disk (you can supply a directory on the hard disk as
the target directory, when prompted for the target drive/directory).

See also;
Make INF file
Log the Build History
Compress the Files

Log the Build History
The Project Manager can produce a log of every attempt to build the install disks. This
log is saved in an ascii file (the project's name, with the extension .LOG). The date
and time of each build, and the details of the attempts to copy each file in the project,
(including whether the files were just copied or were compressed) are logged. If you
want a build to be logged, then you need to check this check box. The log file can
easily become very big, so it is a good idea to delete it occasionally.

See also;
Make INF file
Build the Install Disks
Compress the Files

Compress the Files
By default, when the install disks are being built, the files are simply copied to the
target drive/directory. If you check this check box, then the files will be compressed
with Microsoft's COMPRESS.EXE. Note that if COMPRESS.EXE is not found in the
"PATH", then the attempt to compress the files will fail.

See also;
Make INF file
Build the Install Disks
Log the Build History

Compile File
Chief's Installer Pro obtains all its configuration information from a file called
WINSTALL.INF. This file is an ASCII file, which can readily be browed and edited with
simple text editors. While this makes it easy for you to edit and maintain, it also
makes it easy for hackers to tamper with your install script. By the same token, BATCH
files written to work with Chief's Installer Pro and in the same ASCII format, and
subject to the same problems.
In order to combat these problems, Chief's Installer Pro comes with a command line
compiler for INF and BATCH files, called COMPILE.EXE. The same functionality can be
obtained by selecting the "Compile File ..." menu option from the AutoCalc main
window. The compiler converts the input files into a binary format (different for INF
and BATCH files) thereby protecting the files. Chief's Installer Pro can cope with either
compiled files or ASCII files, so it does not matter whether or not your INF and BATCH
files are compiled.
When you select the "Compile File ..." menu option, a dialog box will appear in which
you are prompted for the names of the source and output files. The output file will
contain the compiled version of the source file. If the source file is a Chief's Installer
Pro batch file, you need to check the checkbox that reads "Source File is a Chief's
Installer Pro Batch File" BEFORE compiling the file. Trying to compile an INF file as a
batch file, or vice versa, will certainly lead to errors in running the installer.

Calculate Space Requirements
This facility is provided for backward compatibility with older versions of AutoCalc and
Chief's Installer Pro. It does what simply running AutoCalc with no parameters did
under version 1.x of Chief's Installer Pro. It's functionality has been replaced in version
2.0 with the functions in the Project Manager.
The purpose of this facility is to calculate the space requirements of your program,
before you ship the disks. It takes its input (as AutoCalc did under Chief's Installer Pro,
version 1.x) from WINSTALL.INF and AUTOCALC.INI. Note that it does not open or
read any project file at all. It is therefore best used when the WINSTALL.INF file has
been finalised, and the program's files have been put in places where AutoCalc can
find them (see below for more details).
Specifically, the AutoCalc Space Calculator does the following;

[a] read the $DISK lines in your WINSTALL.INF file
[b] read the $WINDIR lines in your WINSTALL.INF file
[c] read the $SYSDIR lines in your WINSTALL.INF file
[d] read the $TEMPDIR lines in your WINSTALL.INF file
[e] read the $OPTIONAL lines in your WINSTALL.INF file
[f] check for all the files on those lines
[g] obtain the sizes of the files (if a file is compressed, it gets the size of the
expanded image of the file)
[h] total the sizes of all the files in the installation set
[i] total the sizes of the files that make up each user option
[j] total the sizes of the files that go into the Windows directory
[k] total the sizes of the files that go into the Windows SYSTEM directory
[l] total the sizes of the files that go into the TEMP directory (for $SWAP-SPACE)
[m] add 0.5% to each of the figures, as a safety margin (because of disk cluster
sizes)
[n] display the results on the screen
[o] write the result into WINSTALL.INF

Please try to ensure that the directory in which the files are only contains files that will
go on your installation disks - otherwise, the calculations might be wrong. Also, try to
be a little specific in your use of wildcards on $DISK lines (especially if your installation
set consists of more than 1 disk) - e.g., do please NOT do something like;

$DISK1=*.*
$DISK2=*.*
$DISK3=*.??_
$DISK4=*.??_

This will only confuse the program, and the same files will be processed over and over
again. One common cause of inaccurate space calculations by AUTOCALC is the
indiscriminate use of wildcard characters. Please NOTE this point.
When AutoCalc has finished calculating the space requirements (the process might
take some time) the results are written into WINSTALL.INF. Please note that you should
do this BEFORE compiling the WINSTALL.INF file. Note that this facility may be

removed in future versions, in favour of the Project Manager.

Locations of files for space calculations;

In respect of matters described above, AutoCalc, when calculating space
requirements, defaults to looking for all the files in the CURRENT directory (i.e., the
directory being processed). If it does not find the files in that directory, then it will look
for them in certain sub-directories under the directory tree of the current directory,
or in directories pointed to in the AUTOCALC.INI file (the latter only applies to files
going into $WINDIR, $SYSDIR, and $TEMPDIR - please see the help index of CHIEF.HLP
for what these things mean).
The supported directories under the directory tree of the current working directory
are:

1. Files going to the Windows directory: $WINDIR
OR the directory pointed to by the $WINDIR= setting in AUTOCALC.INI

e.g.,
[a]. C:\MYPROGRAM\$WINDIR
[b]. $WINDIR=xxxx in AUTOCALC.INI

2. Files going to the Windows SYSTEM directory: $SYSDIR
OR the directory pointed to by the $SYSDIR= setting in AUTOCALC.INI

e.g.,
[a] C:\MYPROGRAM\$SYSDIR
[b]. $SYSDIR=xxxx in AUTOCALC.INI

3. Files going to the TEMP directory: $TEMPDIR
OR the directory pointed to by the $TEMPDIR= setting in AUTOCALC.INI

e.g.,
[a] C:\MYPROGRAM\$TEMPDIR
[b]. $TEMPDIR=xxxx in AUTOCALC.INI

4. Files for each $DISK# line: $DISK#
OR the directory pointed to by the $DISK#= setting in AUTOCALC.INI

e.g.,
[a] C:\MYPROGRAM\$DISK1
[b]. $DISK2=xxxx in AUTOCALC.INI

NOTES:
1. AutoCalc will first look in the directory tree of the source directory for the relevant
sub-directory. If the sub-directory does not exist there, then AutoCalc will look in the
AUTOCALC.INI file for any relevant entry. If this is not found, or if it points to an invalid
directory, then AutoCalc will look in the source directory.

2. AutoCalc sometimes gives you a negative value for $SPACE (or any of the others).
In such cases, simply replace the negative value with a ZER0.
3. Sometimes the space calculations produced by AutoCalc are not accurate. There
are many causes for wrong calculations by AUTOCALC. The primary cause is
indiscriminate use of wildcards in your INF file. Other causes, which might be related
to the one already mentioned are:

[a] Mixing wildcards and full file names on $DISK, $SYSDIR, $WINDIR, $TEMPDIR,
and $OPTIONAL lines - this might result in some files being processed more than
once.
[b] Having files in the directories being processed by AUTOCALC which files are not
going to be on your distribution disks.

The bottom line is this - if you are going to use wildcards on your $DISK and/or
$OPTIONAL lines, you need to think very carefully about what you are doing. It is up to
you to arrange your lines so that no file is liable to be processed twice - this is
because AUTOCALC processes your INF file exactly as it finds it.
In my view, it advisable to AVOID mixing wildcards and full file names on $OPTIONAL
lines. Either use ONLY wildcards, or ONLY full file names. But if you are NOT relying on
AutoCalc for your space calculations, then you can freely mix wildcards and full file
names.

Convert VB Setup file
This presents a facility for Visual BASIC programmers who have been using the Setup
Wizard to create their installation routines. The facility takes a Visual BASIC Setup
Wizard .VBZ file as its input, and converts this into a Chief's Installer Pro project file.
You can then manipulate the new project file with the Project Manager as normal.
By default, the new Chief's Installer Pro project is simply called "CONVERT". You need
to rename it to something more meaningful before performing the conversion. Note
that you should not give any file extension for the name of the converted project. Any
project name supplied as the Chief's Installer Pro project will automatically have the
extension .CPJ for the project, .HDR for the project's header file, and .INF for the
project's template INF file.
Note that this is only a facility to simplify the process of moving from Setup Wizard.
Most things (e.g., file lists) are converted, but some things may be missed out. You
might still need to edit the new project afterwards.

